www.eaa.net.au

CERAMIC DISC CAPACITORS TEMPERATURE COMPENSATING (CLASS 1)

TC:

Temperature compensating ceramic capacitors boast unique characteristics concerning their capacity-temperature coefficient which is practica||y unknown in other types of capacitors. In addition, the following advantages are incorporated.

- a) Changes in capacitance due to temperature changes are liner and reversible. Moreover, any optional temperature coefficient is obtainable.
- **b**) Compared with conventional types of capacitors, construction of these is much simpler and inductance is negligible, enabling them to function as capacitors up to high-frequencies.
- c) Conveniently small-sized.
- d) The Q-value is superior from low-to high-frequency ranges.
- e) Excellent heat resistance ; insulation deterioration due to temperature rise is limited.
- **f**) Capacitors with small capacitance tolerance are easily obtained. No secular change is observed in capacity value.
- **g**) Because of their stout moisture resistance and long-life characteristics, these capacitors can be used permanently under normal conditions.

ELECTRIC CHARACTERISTICS

1. Capacitance and Temperature

Measured at a temperature of 20° , using an AC current at a frequency of 1MHz \pm 100KHz and at an effective value of 0.5~5V.

Symbol	Cap.≦10pF	Cap. > 10pF
С	±0.25pF	-
D	±0.5pF	-
F	±1.0pF	-
G	±2.0pF	±2%
J	-	±5%
K	-	±10%
М	-	$\pm 20\%$

Unless doubt exists on to measurement results, the frequency is 0.4~1.4MHz.

Capacitance and Applicable Tolerance				
Capacitance	0.5~4pF	5pF	6 ~ 10pF	more than 10pF
Tolerance	C.D	C.D.F	D.F.G	J.K.M

2. Quality Factor

C: CAP

T.C.	Capacitance	Q Value
P100 to N1500 &	30pF and over	≧1000
SL	less than 30pF	≧400+20 x C
N2200 to N4700	30pF and over	≧500
	less than 30pF	≧200+10 x C

www.eaa.net.au

3. Insulating resistance

10000 MΩ min. at working voltage for 1 minute.

4. Testing Voltage

DC voltage is applied between terminals from 1 to 5 seconds; voltage is applied through a resistor with maximum charging discharging currents less than 50mA

W.V	25~500 V	1~2 KV	3~5 KV	6~15 KV
T.V	W.V. x 3	W.V. x 2	W.V. x 1.75	W.V. x 1.5

5. Temperature Coefficient(Example:)

www.eaa.net.au

EIA RS-198		JIS		JIS		
Marking	Temperat Coefficie (PPm/de	ure ent g)	Ma	rking	Temperature Coefficient (PPm/deg)	Color
P7	P 15	0			P=+, N=-	
M7	P 10	0	A	Κ	P 100 ±250	Gold
S 6	P 33	3	В	J	P 30 ±120	Gray
C0	NP 0		C	Н	NP 0 ± 60	Black
S1	N 33	3	H	G	N 30 ±30	Brown
U1	N 75	5	L	H	N 80 ±60	Red
P2	N 15	0	P	H	N 150 ±60	Orange
R2	N 22	0	R	H	N 220 ±60	Yellow
S2	N 33	0	S	H	N 330 ±60	Green
T2	N 47	0	T	H	N 470 ±60	Blue
U2	N 75	0	U	J	N 750 ±120	Purple
P3	N 150)0	V	K	$N1000 \pm 250$	-
R3	N 220)0	W	L	$N1500 \pm 5000$	-
S 3	N 330)0	Χ		N2200	-
T3	N 470)0	Y		N3300	-
	P 100 ~ N	750	Ζ		N4700	-
	P 150 ~ N 2	1500	SL	,	P 350 ~ N1000	-
	N 1000 ~ N	5200	YN	1	N 800 ~ N5800	-

www.eaa.net.au

6. Marking

Diameter T.C.	5 ∅ & Smaller	6 Ø, 8 Ø	more than 10 💋
SL (P350~N1000)	Lo Capacitance Working Voltage	Capacitance Capacitance Tolerance Working Voltage	Manufacturer Logo Capacitance Capacitance Tolerance Working Voltage
P100~ N750 (A.B.C.H.L. P.R.S.T.U.)	Temperature Coefficient Capacitance Working Voltage	Тетрегаture Coefficient Capacitance Capacitance Tolerance Working Voltage	Manufacturer Logo Temperature Coefficient Capacitance Capacitance Tolerance Working Voltage

Note: Underline of marking expresses 50V, no underline stands 500V.

50V DC.

Specifications:

- 1. Temp. Range:
- 2. Working Voltage:
- 3. Testing Voltage:
- 4. Insulation Resistance:
- **5.** Q:
- 6. Testing Condition:

-25°C_jã+85°C 50V. DC. 150V. DC. 1~5 Sec. (50mA Max) 10,000 MΩMIN (50V. DC.) More than 30pF: 1000Min. Less than 30pF: 400+20C(c:cap)

1 MHz (0.5~5V rms) at 20°C